Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Med (Lond) ; 23(2): 157-163, 2023 03.
Article in English | MEDLINE | ID: covidwho-2263047

ABSTRACT

During the coronavirus 2019 (COVID-19) pandemic, the implementation of non-contact infrared thermometry (NCIT) became an increasingly popular method of screening body temperature. However, data on the accuracy of these devices and the standardisation of their use are limited. In the current study, the body temperature of non-febrile volunteers was measured using infrared (IR) thermography, IR tympanic thermometry and IR gun thermometry at different facial feature locations and distances and compared with SpotOn core-body temperature. Poor agreement was found between all IR devices and SpotOn measurements (intra-class correlation coefficient <0.8). Bland-Alman analysis showed the narrowest limits of agreement with the IR gun at 3 cm from the forehead (bias = 0.19°C, limits of agreement (LOA): -0.58°C to 0.97°C) and widest with the IR gun at the nose (bias = 1.40°C, LOA: -1.15°C to 3.94°C). Thus, our findings challenge the established use of IR thermometry devices within hospital settings without adequate standard operating procedures to reduce operator error.


Subject(s)
COVID-19 , Thermometry , Humans , Body Temperature , Temperature , Thermometry/methods , COVID-19/diagnosis , Volunteers
2.
Sci Rep ; 12(1): 3905, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740474

ABSTRACT

Temperature sensing is a promising method of enhancing the detection sensitivity of lateral flow immunoassay (LFIA) for point-of-care testing. A temperature increase of more than 100 °C can be readily achieved by photoexcitation of reporters like gold nanoparticles (GNPs) or colored latex beads (CLBs) on LFIA strips with a laser power below 100 mW. Despite its promise, processes involved in the photothermal detection have not yet been well-characterized. Here, we provide a fundamental understanding of this thermometric assay using non-fluorescent CLBs as the reporters deposited on nitrocellulose membrane. From a measurement for the dependence of temperature rises on the number density of membrane-bound CLBs, we found a 1.3-fold (and 3.2-fold) enhancement of the light absorption by red (and black) latex beads at 520 nm. The enhancement was attributed to the multiple scattering of light in this highly porous medium, a mechanism that could make a significant impact on the sensitivity improvement of LFIA. The limit of detection was measured to be 1 × 105 particles/mm2. In line with previous studies using GNPs as the reporters, the CLB-based thermometric assay provides a 10× higher sensitivity than color visualization. We demonstrated a practical use of this thermometric immunoassay with rapid antigen tests for COVID-19.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Immunoassay/methods , Microspheres , Humans , Immunoassay/instrumentation , Microscopy, Electron, Scanning , Thermometry/methods
4.
J Med Eng Technol ; 45(2): 136-144, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1104643

ABSTRACT

There has been a marked rise in the number of avoidable deaths in health services around the world. At the same time there has been a growing increase in antibiotic resistant so-called "superbugs." We examine here the potential role of body temperature measurement in these adverse trends. Electronic based thermometers have replaced traditional mercury (and other liquid-in-glass type) thermometers for reasons of safety rather than superiority. Electronic thermometers are in general less robust from a measurement perspective than their predecessors. We illustrate the implications of unreliable temperature measurement on the diagnosis and management of disease, including COVID-19, through statistical calculations. Since a return to mercury thermometers is both undesirable and impractical, we call for better governance in the current practice of clinical thermometry to ensure the traceability and long-term accuracy of electronic thermometers and discuss how this could be achieved.


Subject(s)
Body Temperature/physiology , Thermometry/methods , COVID-19/diagnosis , COVID-19/physiopathology , Humans , Practice Guidelines as Topic , SARS-CoV-2 , Thermometers/adverse effects , Thermometers/standards , Thermometry/adverse effects , Thermometry/instrumentation , Thermometry/standards , Uncertainty
5.
J Perinat Med ; 49(3): 255-261, 2021 Mar 26.
Article in English | MEDLINE | ID: covidwho-1021717

ABSTRACT

OBJECTIVES: Fever is the single most frequently reported manifestation of COVID-19 and is a critical element of screening persons for COVID-19. The meaning of "fever" varies depending on the cutoff temperature used, the type of thermometer, the time of the day, the site of measurements, and the person's gender and race. The absence of a universally accepted definition for fever has been especially problematic during the current COVID-19 pandemic. METHODS: This investigation determined the extent to which fever is defined in COVID-19 publications, with special attention to those associated with pregnancy. RESULTS: Of 53 publications identified in which "fever" is reported as a manifestation of COVID-19 illness, none described the method used to measure patient's temperatures. Only 10 (19%) publications specified the minimum temperature used to define a fever with values that varied from a 37.3 °C (99.1 °F) to 38.1 °C (100.6 °F). CONCLUSIONS: There is a disturbing lack of precision in defining fever in COVID-19 publications. Given the many factors influencing temperature measurements in humans, there can never be a single, universally accepted temperature cut-off defining a fever. This clinical reality should not prevent precision in reporting fever. To achieve the precision and improve scientific and clinical communication, when fever is reported in clinical investigations, at a minimum the cut-off temperature used in determining the presence of fever, the anatomical site at which temperatures are taken, and the instrument used to measure temperatures should each be described. In the absence of such information, what is meant by the term "fever" is uncertain.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Data Accuracy , Fever/diagnosis , Periodicals as Topic , Research Design/standards , Thermometry/standards , COVID-19/complications , COVID-19 Testing/instrumentation , COVID-19 Testing/standards , Female , Fever/virology , Humans , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Reference Standards , Research Design/statistics & numerical data , Thermometers , Thermometry/instrumentation , Thermometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL